Over-parametrisation in NNs
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Observation 1
GD vs SGD



Moving on the fixed landscape

1. Take an iid dataset and split into two parts Dyain & Diest
2. Form the loss using only D;y4in

1
£train (9) — |Dt . | Z K(ya f(97 ZU))
rain (

3. Find: 0* = arg min L4, (0)
4. ...and hope that it will work on Diyes;

m,y) GDtrain

e N :number of parameters § ¢ RY
e P :number of examples in the training set |Dsqin |
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GD is bad use SGD

“Stochastic gradient learning in neural networks”
Léon Bottou, 1991

The total gradient (3) converges to a local minimum of the cost function. The algorithm
then cannot escape this local minimum, which is sometimes a poor solution of the
problem.

In practical situations, the gradient algorithm may get stuck in an area where the cost
is extremely ill conditionned, like a deep ravine of the cost function. This situation
actually is a local minimum in a subspace defined by the largest eigenvalues of the
Hessian matrix of the cost.

The stochastic gradient algorithm (4) usually is able to escape from such bothersome
situations, thanks to its random behavior (Bourrely, 1989).


http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=49CB80D81593C5F297E36726AD3830A0?doi=10.1.1.52.361&rep=rep1&type=pdf

GD is bad use SGD

Bourrely, 1988



https://www.dropbox.com/s/uqa1tedw2k13ov3/Bourrely_88.pdf?dl=0

GD is the same as SGD

Fully connected network on MNIST: N ~ 450K

il Cost vs. step no for 500-300 network
' : — SGD train|
— SGD test |]
— GD train
10° — GDtest ||

10

I I L I
0 10000 20000 30000 40000 50000

Sagun, Guney, LeCun, Ben Arous 2014


https://arxiv.org/abs/1412.6615

Different regimes depending on N

Bourrely, 1988


https://www.dropbox.com/s/uqa1tedw2k13ov3/Bourrely_88.pdf?dl=0

GD is the same as SGD

Fully connected network on MNIST: N ~ 450K

Cost vs. step no for 500-300 network
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GD is the same as SGD

Further empirical confirmations

e Teacher-Student networks

e |andscape of the spin glass model

e GD vs SGD on fully-connected MNIST

e GD vs SGD on noisy inputs, scrambled labels...



Regime where SGD is really special?

Accuracy

Where common wisdom may be true (Keskar et. al. 2016):
— Similar training error, but gap in the test error.
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https://arxiv.org/abs/1609.04836

The 'generalization gap' can be filled

® |astrzebski et. al. 2017

e Goyal et. al. 2017

e Shallue and Lee et. al. 2018
® McCandlish et. al. 2018

® Smith et. al. 2018


https://arxiv.org/abs/1711.04623
https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1811.03600
https://arxiv.org/abs/1812.06162
https://arxiv.org/abs/1711.00489
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The 'generalization gap' can be filled

Start

® Jastrzebski et. al. 2017
Goyal et. al. 2017

Shallue and Lee et. al. 2018
McCandlish et. al. 2018
Smith et. al. 2018

Minimum

® Less noise, larger steps

® More noise, smaller steps




The 'generalization gap' can be filled
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which scaling efficiency decreases significantly



The 'generalization gap' can be filled

Why is it important?



Large batch allows parallel training

Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour

Priya Goyal Piotr Dollar Ross Girshick Pieter Noordhuis
Lukasz Wesolowski ~ Aapo Kyrola Andrew Tulloch  Yangging Jia Kaiming He
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Where SGD=GD breaks down

Poly-time universality and limitations of deep learning

Emmanuel Abbe Colin Sandon
EPFL MIT

Abstract

The goal of this paper is to characterize function distributions that deep learning can or
cannot learn in poly-time. A universality result is proved for SGD-based deep learning and a
non-universality result is proved for GD-based deep learning; this also gives a separation between
SGD-based deep learning and statistical query algorithms:

(1) Deep learning with SGD is efficiently universal. Any function distribution that can be
learned from samples in poly-time can also be learned by a poly-size neural net trained with
SGD on a poly-time initialization with poly-steps, poly-rate and possibly poly-noise.




Where SGD=GD breaks down

Results in Abbe and Sandon

e depends on the structure of the data
e |ikely not applicable for images, sound etc...



Lessons from Observation 1

e Optimization of the training function is easy
... as long as there are enough parameters

o Effects of SGD is a little bit more subtle
... but exact reasons are somewhat unclear



Observation 2
A look at the bottom of the loss



Different kinds of minima

Continuing with Keskar et al (2016): LB — sharp, SB — wide...
Also see Jastrzebski et. al. (2017), Chaudhari et. al. (2016)...
Older considerations Pardalos et. al. (1993)

Sharpness depends on parametrization: Dinh et. al. (2017)


https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1711.04623
https://arxiv.org/abs/1611.01838
https://arxiv.org/abs/1703.04933

Different kinds of minima

Continuing with Keskar et al (2016): LB — sharp, SB — wide...
Also see Jastrzebski et. al. (2018), Chaudhari et. al. (2016)...
Older considerations Pardalos et. al. (1993)

Sharpness depends on parametrization: Dinh et. al. (2017)

Hig(R) = f 1{ f Sa(R — ff!},l":h"(ff}::f]ﬁ'} (2)

where R is a multidimensional vector representing all the coordinates in the molecule.
One of the simplest and most useful forms for S, is a Gaussian

SA(R) = C(A)e ™R
C(A) = = 2Det *(A) (3)

where d is the total dimensionality of B. 'l'he function [ included in (2) allows for non-
linear averaging. Two choices motivated by physical considerations are f(r) = r and f(z) =
e~*/¥8T  These choices correspond respectively to the “diffusion equation™ and “effective
energy” methods which are described below. Wu [77] has presented a general discussion of
transformations of the form of (2).

A highly smoothed Hy ; (from which all high spatial-frequency components have been
removed) will in most cases have fewer local minima than the unsmoothed (“bare”) func
tion, so it will be much easier to identify its global minimum. If the strong spatial-scaling
hypothesis is correct, the position of this minimum can then be iteratively tracked by local-
minimization as A decreases. As A — 0, the position will approach the global minimizer of
the bare objective function.



A look through the local curvature

Eigenvalues of the Hessian at the beginning and at the end

le—1 Full spectrum at large scale

At initial point

1.5 At final point

Eigenvalues
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A look through the local curvature

Increasing the batch-size leads to larger outlier eigenvalues:

lel Right eigenvalue distribution
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A look at the structure of the loss

Recall the loss per sample: £(y, f(6;x))

e /is convex (MSE, NLL, hinge...)
e fisnon-linear (CNN, FC with ReLU...)

We can see the Hessian of the loss as:

V2(f) = ' (F)VIVET +0(f)V2]

a detailed study on this can be found in
Papyan 2019 and Fort & Ganguli 2019


https://arxiv.org/abs/1901.08244
https://arxiv.org/abs/1910.05929

More on the lack of barriers

1. Freeman and Bruna 2017: barriers of order 1/N

2. Baity-Jesi & Sagun et. al. 2018: no barriers in SGD dynamics
3. Xing et. al. 2018: no barrier crossing in SGD dynamics

4. Garipov et. al. 2018: no barriers between solutions

5. Draxler et. al. 2018: no barriers between solutions


https://arxiv.org/abs/1611.01540
https://arxiv.org/abs/1803.06969
https://arxiv.org/abs/1802.08770
https://arxiv.org/abs/1802.10026
https://arxiv.org/abs/1803.00885
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3. Xing et. al. 2018: no barrier crossing in SGD dynamics

4. Garipov et. al. 2018: no barriers between solutions

5. Draxler et. al. 2018: no barriers between solutions
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Lessons from Observation 2

e Alarge and connected set of solutions
... possibly only for large N

e Visible effects of SGD is on a tiny subspace
... again, exact reasons are somewhat unclear



A simple example



Lessons from observations

Observation 1: easy to optimize
Observation 2: flat bottom

('wl ’w2.)2



Defining over-parametrization

Several papers joint with: Mario Geiger, Stefano Spigler, Marco
Baity-Jesi, Stephane d'Ascoli, Arthur Jacot, Franck Gabriel, Clement
Hongler, Giulio Biroli, & Matthieu Wyart



Puzzles with partial answers

1. For large N the dynamics don't get stuck
— When is the training landscape nice?

2. Often N >> P, yetitdoesn't it overfit
— Relationship of the landscape with generalization?

e N :number of parameters § ¢ RY
e P :number of examples in the training set |Diyq;n |



Sharper vision through hinge loss

Switch to squared-hinge from cross-entropy
Uy, f(0;2)) = 3maz(0,1 - yf(6;z))”

e precise stopping condition
e clear stability condition

V2(f) = VIVIT + (1 - yf) VS

e sum over unsatisfied constraints
e alocal minimum is only possible if: N/2 < P (very loose)



Sharp transition to OP in NNs
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e N :number of parameters § ¢ RY
e P :number of examples in the training set |Diyq;n |
e N*:critical number of parameters that fits D;yqin



Sharp transition to OP in NNs
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Sharp transition to OP in NNs

N .
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e N :number of parameters § ¢ RY
e P :number of examples in the training set |Diyq;n |
e N*:critical number of parameters that fits D;yqin



Jamming is linked to Generalization

Test Error
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Jamming is linked to Generalization

Test Error

| LI RLL | LI RLL) | LI RLL) | LI LLL) | LI RLL) | LI
102 103 104 10° 106 107

A similar peak is also observed in Advani and Saxe 2017


https://arxiv.org/abs/1710.03667

Jamming is linked to Generalization

Test Error
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Independent parallel work

Belkin et. al. December 31, 2018

under-parameterized over-parameterized

Test risk
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~ Training risk
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Complexity of H

See also Neal et al. 18, Neyshabur et al. 15 & 17 for related studies


https://arxiv.org/abs/1812.11118
https://arxiv.org/abs/1810.08591
https://arxiv.org/abs/1412.6614
https://arxiv.org/abs/1706.08947

Ensembling improves generalization

Key: reducing fluctuations or increased regularization with N
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https://arxiv.org/abs/1901.01608
https://arxiv.org/abs/1901.01608

Ensembling improves generalization
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Recent work extends this beyond CNNs

Nakkiran et. al. 2019 extends the result to ResNets, transformers...

Classical Regime: Modern Regime:
Bias-Variance Tradeoff Larger Model is Better
A A
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Figure 1: Left: Train and test error as a function of model size, for ResNet18s of varying width
on CIFAR-10 with 15% label noise. Right: Test error, shown for varying train epochs. All models
trained using Adam for 4K epochs. The largest model (width 64) corresponds to standard ResNet18.
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https://arxiv.org/abs/1912.02292

Concluding remarks

Potential impact:

e Clear definition of OP can help guide design of models

e At finite P we have a proposal for the best generalization

e New directions for theoretical understanding
— Belkin et. al. March 2019
— Hastie et. al. March 2019
— Montanari et. al. November 2019


https://arxiv.org/abs/1903.07571
https://arxiv.org/abs/1903.08560
https://arxiv.org/abs/1911.01544

Future work

On the model-data-algorithm interactions:
e Can we disentangle the algorithmic choices?
e Can we entangle the model-data interactions to unite

= model complexity measure

= data complexity measure



Thank You!



